VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (C.S.E.) I-Semester Supplementary Examinations, May/June-2017

Data Structures

Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FNVE from Part-B

Part-A (10 X 2=20 Marks)

1. Define Space and Time complexity of an algorithm.
2. Write pseudo code to count the number of nodes in a singly linked list.
3. Evaluate the postfix expression: $32 * 9+84 /-64 *+$ using stack.
4. What is the need for hashing?
5. Write pseudo code for finding the minimum element in a binary search tree.
6. What is the advantage of an AVL tree over binary search tree?
7. What is the minimum number of connected components in a simple, undirected and disconnected graph?
8. Let G be a connected, undirected graph with 50 vertices and 200 edges. The cost (weight) of a minimum spanning tree of G is 275 . Determine the cost of a minimum spanning tree of G, if the weight of each edge of G is increased by three.
9. Which of the following arrays is efficiently sorted in descending order by Insertion sort?

A: $(10,20,30,40,50,60,70,80)$
B: $(80,70,60,50,40,30,20,10)$
Justify your answer.
10. What is the height of a heap with 54 elements?

Part-B $(5 \times 10=50$ Marks $)$
11. a) Formally define asymptotic notations with suitable examples.
b) Write a function to insert the element ' x ' after the $k^{\text {th }}$ position in a singly linked list.
12. a) With pseudo code explain push and pop operations of stack when implemented using arrays.
b) What is a collision in hashing? Explain hashing with chaining with a suitable example.
13. a) Define a binary tree. Determine the minimum and the maximum number of nodes in a binary tree of height h.
b) Construct a Binary Search Tree (BST) for the sequence of elements: 10, 20, 15, 42, 12, $18,16,6,4,8$ and 9. Delete node with key 15 from the constructed BST.
14. a) Define a connected graph. Apply DFS algorithm to the following graph and find four different DFS orderings by considering the vertex b as the source.

b) Define a Minimum Spanning Tree (MST). Determine a MST of the following graph by applying Kruskal's algorithm.

15. a) Show the content of an array after the each iteration of merge sort algorithm. Initial content of an array is $29,38,27,43,3,9,82,10,18$.
b) Write the pseudo code for Heap sort algorithm.
16. a) Explain with a suitable example an advantage of doubly linked list over singly linked list.
b) Write a program to implement the circular queue.
17. Write short notes on any two of the following:
a) Deletion operation in Binary Search Tree
b) Dijkstra's Algorithm
c) Quick Sort

